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Abstract—The effect of radiation on the combined free and forced convection flow of an electrically
conducting fluid inside an open-ended vertical channel and permeated by a uniform transverse magnetic
field is considered. Closed form solutions for the velocity, temperature and the induced magnetic field
are obtained in the optically thin limit case when the wall temperatures are varying linearly with the
vertical distance. It is found that radiation tends to increase the rate of heat transport to the fluid
thereby reducing the effect of natural convection. Velocity and the induced magnetic field increase and
the temperature difference between the wall and the fluid decreases with increase in the radiation
parameter. In the unstable situation corresponding to heating of the channel from below, both radiation
and magnetic field exert stabilizing influence on the flow.

NOMENCLATURE
B, induced magnetic field;
By,  applied magnetic field;
C, constant defined by equation (8);

Cp, specific heat at constant pressure;

F, radiation parameter defined by equation (16);
g. gravitational acceleration;

L, half width of channel;

2 pressure;

qr» radiative heat flux;

T, temperature;

T*,  temperature defined by equation (1);
wall temperature at z = 0;
v, velocity.

Greek symbols

a, thermal diffusivity;
B, volumetric expansion coefficient;
0*, the temperature difference 7% —T,,;
U, magnetic permeability;
v, kinematic viscosity;
P, reference density;
a, electrical conductivity.
Subscript
w, value at the wall.
INTRODUCTION

SEVERAL investigations have been carried out on prob-
lems of heat transfer in electrically conducting liquids
permeated by electromagnetic fields. Such studies are
of importance in the design of MHD generators,
cross-field accelerators, shock tubes and pumps. A

comprehensive review of these problems is given by
Romig in [1]. Siegel [2], Perlmutter and Siegel [3],
and Alpher [4] presented detailed analysis of forced
convection heat transfer to an electrically conducting
liquid flowing in a channel with a transverse magnetic
field. Convective flow in a vertical channel was analyzed
by Gershuni and Zhukhovitsky [5] when the wall
temperatures are constant and by Yu [6] when the
wall temperatures vary linearly with the vertical dis-
tance, the flows being subjected to a transverse mag-
netic field.

The above studies, however, do not take into account
heat transfer by radiation, which will be significant
when we are concerned with space applications and
higher operating temperatures. Greif, Habib and Lin
[7] obtained an exact solution for the problem of
fully-developed, radiating laminar convective flow in
a vertical heated channel in the optically thin limit.
The effect of radiation on MHD channel flow with
heat transfer, however, does not seem to have received
much attention. Viskanta [8] investigated the forced
convection flow in a horizontal channel permeated by
uniform vertical magnetic field taking radiation into
account. He studied the effects of magnetic field and
radiation on the temperature distribution and the rate
of heat transfer in the flow but did not discuss the
influence of radiation on the induced magnetic field.

The object of the present paper is to discuss the
effect of radiation on the combined free and forced
convection of an electrically conducting fluid flowing
inside an open-ended vertical channel in the presence
of a uniform transverse magnetic field. We shall,
however, confine our analysis to optically thin limits.
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ANALYSIS

Consider the flow of an electrically conducting fluid
inside a vertical channel formed by two parallel plates
(distant 2L apart) whose surface temperatures vary
lincarly along the vertical direction, taken as z-axis.
We take the origin at the centre of the channel and
we assume that a uniform magnetic field B, acts
normal to the plates.

For the fully developed laminar flow in a uniform
transverse magnetic field, the velocity and the induced
magnetic field have only a vertical component, and
all of the physical variables except temperature and
pressure are functions of y, y being the horizontal
co-ordinate normal to the plates. The temperature
inside the fluid can be written as

T=T*y)+N:z ()

where N is the vertical temperature gradient. The
momentum equations in the y and z directions give

cp BdB
=0 (2)
Cy pody
de o dB 1ép
e +— — 4+ gB(*F+N2)—— — =0 3
dy?  pudy A ) p iz 3)

the equation of continuity being identically satisfied.
The energy and the magnetic induction equations
reduce to

d2o* 1 ¢
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where in (4) we have neglected the viscous and ohmic
dissipation and MKS units are used in the above
equations. In the optically thin limit, the fluid does
not absorb its own emitted radiation. This means that
there is no self-absorption but the fluid does absorb
radiation emitted by the boundaries. Cogley, Vincenti
and Gilles [9] showed that in the optically thin limit
for a non-grey gas near equilibrium, the following
relation holds

Odg * ;

SI=AT-TY J ) K;(dey,/dT), dA (6)
where K is the absorption coefficient, ¢, is the Planck
function and the subscript w refers to values at the wall.
Further simplifications can be made concerning the
spectral properties of radiating gases (Tien [10]) but
are not necessary for our investigation. Substitution of
equation (6) in (4) yields

d20*

NL::ocd—y?—(‘()* (7)
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where

4
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Here the subscript 0 indicates that all quantities have
been evaluated at the reference temperature T, defined
in the nomenclature. Hence our study will be limited
to small variations in wall temperature.

Integrating (2) with respect to y, we have

B*
p=-x +f(z). (9)
l

Substitution of (9) in (3) gives

d% L Bo dB e 1df AN
Yo o e = - — — Z.
dyz 9 I dZ 9

op dy (10)

Since the right hand side of (10) is a function of =
only and the left hand side is a function of y only, each
side must be equal to a constant Cy. Thus

d2p . By dB +gfl* = C
V- —— = (4.
dy?  pu dy g !

The constant €, depends on the physics of the problem.
It may be determined from either the end conditions
of pressure, to which the channel is subjected, or from
the mass flow through the channel.

We now introduce the following dimensionless
quantities

(11)

¥ Lo 0* _ B
L’ '
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NL B,

2

M = Hartmann number = B, L(s/pv)'/*.

Ra = Rayleigh number = gBNL*/vz, (12)
Pm = magnetic Prandtl number = agp.
Using (12), equations (11), (5) and (7) become
d*n M?*db
dh—z%—ir)ad'—]ARa.t:Cz (13)
1 d* du
Pody? dy " (4
d’t
g~ Fr=-u (15)
respectively, where
F= LZC C, = Cl[j (16)
% ay

The boundary conditions for velocity and temperature
are
u=t=0 at

n=+1 (17

Since the channel walls are assumed electrically non-
conducting, the magnetic boundary conditions are

b=0 at n=+1. (18)



Radiation effect on hydromagnetic convection

Integration of (14) gives

1 db
— —+u = constant = Cj.

19
Pm dn 19

Elimination of uand b from (13), (15) and (19) then yields
d%t , d?t )
W_(F_‘-M )W‘{—(M F+Ra)t =C,
where C, = M2C; —C,. From the above equation, the
solution of ¢(n) satisfying the boundary conditions (17)
is easily obtained. Having found t, one can determine
u and b from (15) and (19) using the boundary con-
ditions (17) and (18). These solutions are
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increase in the induced field b(y) with increase in F.
Such a trend is reflected in Fig. 5 which shows b/Pm
against n for various values of F subject to the above
mentioned values of Ra, M? and C,. Figure 4 shows
that b/Pm decreases with increase in M? (with F = 1,
Ra =1, Cy =1). It may be noted that large values of
Pm will correspond to large values of the induced
magnetic field. Further, since the temperature inside
the fluid increases with increase in M for fixed F, Ra
and Cg, it follows that ¢ decreases with increase in M
as shown in Fig. 2. As for the flow rate given by (24),
we may note that since u increases with F (for fixed M,
Ra and C,) w also increases with F. Further since the

C, K3  coshKy K  coshKjp
to) = 5 [ - S (20)
(M*F +Ra) (Ki —K{) coshK; (Ki—K?) coshk,
) C, F K3(F—Kf) coshK,ny KZ(F—-K%?) cosh K,n o1
u = . it . .
"= (M?F1Ra) (KZ—K?) coshK, ' (K3—K?) coshK,
C4Pi K}F-K}? inh K K3F-K? inh K.
) P — (KD siphKin ok b+ =KD [k, - ShKan 22)
(M*F +Ra)(K5 — K?) K; cosh K, 5 cosh K,
where
K; = [(F+M?)/2+{(F—M?*? —4Ra} 112 /2]\1 23

K= [F+M)2—{(F~-

M?)> —4Ra}'?2]'2.

The non-dimensional flow rate w and the heat-transfer coefficient  (at the wall # = 1) due to thermal conduction

are given by

1
w=f udny

-1

2C, KHF-K}) K{(F—-K3)
= | F(K2-K}) -2 tanh K, + ——— "’ tanh K 2
(M2F+Ra)(K22—K12)[ K-k A A 29

o (dt 3 C,KiK? tanh K, tanhK, 25)
~ \dn/,-1 (MPF+Ra)(K}-KD'| K K, |

RESULTS AND DISCUSSIONS

Radiation tends to increase the rate of heat transport
to the gas, thereby increasing the temperature of the
gas. Thus the effect of radiation is to reduce the
influence of natural convection by causing a reduction
in the temperature difference between the fluid and
the channel walls. This is shown in Fig. 3 where ¢
decreases with increase in F with Ra=1, M? =10,
C4 = 1. Again due to this effect, the reduction in velocity
occurring in a heated upflow is less for a radiating
fluid than that for a non-radiating fluid. This explains
why the velocity u(n) at a point increases with increase
in F for fixed values of Ra, M? and C, as shown in
Fig. 1, where we have taken Ra=1, M? =10 and
C, = 1. This increase in velocity in its turn tends to
pull the magnetic lines of force thereby causing an
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velocity profile becomes progressively flatter with in-
crease in the magnetic parameter M (for fixed F, Ra
and C,), w decreases with increase in M. These results
are shown in Table 1 for Ra=1 and C, =1. The
corresponding results for h, the rate of heat transfer
at the wall given by (25) are shown in Table 2 for
Ra=land Cy; =1.

We conclude our discussion with an interesting
observation on the effect of radiation on the flow in
the unstable situation N < 0. In this case there is
heating from below so that Ra <0 as can be seen
from (12). Although the solutions for t(n), u(y), and
b(n) given by (20)-(22) are finite for all values of
F, Ra and M? with Ra >0, these functions may
become infinite for Ra < 0 such that K, becomes a
pure imaginary number given by K; = iK,, K3 being
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Table 1. Variation of flow rate with radiation and magnetic field

F
M? 1 2 3 4 5 6

10 0-134033 0-134679 0-135093 0-135380 0135592 0-135754
20 0-076726 0-076929 0-077058 0-077148 0077214 0077264
30 0-054053 0-054151 0-054213 0-054256 0-054238 0-054312

Table 2. Variation of heat-transfer rate at the wall with F and M

F
M? 1 2 3 4 5 6
10 0048561 0-038499 0-032031 0-027513 0-024172 0021597
20 0-027991 0-022281 0018617 0-016058 0-014165 0-012705
30 0-019809 0-015819 0013259 0011471 0010147 0-009124
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Fi1G. 3. Effect of different radiation parameters on
temperature for M? = 10.
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FIG. 2. Temperature distribution for different values of Fic. 4. Effect of Hartmann number on induced field for

Hartmann number for F = 1. F=1
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FIG. 5. Effect of radiation on induced field for M? = 10.

real. Examination of the solutions (20)—(22) reveals
that there are critical values of K; (viz. K3 = nn/2,
n being an odd integer), such that cosh K, = cos K3
vanishes and t(), u(y) and b(n) become infinite. This
is a result of the emergence of instability. Equating
iK, to /2 (corresponding to the lowest eigenvalue
n=1) with K, given by (23), the critical Rayleigh
number at the onset of instability is given by

* [n?
—Rac=-[4+F+M2}+FM2 (26)

4
with Ra, < 0. This shows that the critical Rayleigh
number not only increases with increase in the
Hartmann number M but also increases with increase
in the radiation parameter F. Thus radiation exerts
a stabilizing influence on the flow which is consistent
with the fact that radiation tends to reduce the effect
of natural convection.
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Finally we remark that although our analysis is
confined to optically thin limit flows, such a study will
be useful in increased understanding of the flow
phenomenon which can then be used to study more
complex phenomena involving radiation.
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EFFET DU RAYONNEMENT SUR A CONVECTION HYDROMAGNETIQUE
DANS UNE CONDUITE VERTICALE

Résumé—On considére effet du rayonnement sur la convection mixte d’un fluide électriquement con-
ducteur dans un canal vertical ouvert aux extrémités et soumis & un champ magnétique uniforme et
transversal. On obtient les solutions analytiques pour la vitesse, la température et pour le champ
r_nagr}étique induit, ceci dans le cas d’une épaisseur optique mince et d’une température de paroi variant
linéairement avec la distance verticale. On trouve que le rayonnement tend a accroitre le flux de transport
thermique et de réduire en conséquence I'effet de la convection naturelle. La vitesse et le champ magnétique
induit augmentent et la différence de température entre la paroi et le fluide diminue lorsque le
paramétre de rayonnement croit. Dans la situation instable qui correspond au chauffage du canal a
partir du bas, le rayonnement et le champ magnétique exercent tous deux une influence stabilisante
sur Pécoulement.
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STRAHLUNGSEINFLUSS BEI HYDROMAGNETISCHER KONVEKTION
IN EINEM VERTIKALEN KANAL

Zusammenfassung--Es wird der Strahlungseinflul auf den gekoppelten freien und erzwungenen
Konvektionsstrom eines elektrisch leitenden- Fluides in einem vertikalen Kanal mit offenem Ende
betrachtet. wobei das Fluid einem gleichformigen transversalen Magnetfeld ausgesetzt ist. Eine
geschlossene Form von Lésungen erhiilt man fiir die Geschwindigkeit, die Temperatur und das induzierte
Magnetfeld im optisch diinnen Grenzbereich. firr den sich die Wandtemperatur linear mit der vertikalen
Entfernung verdndert. Es zeigt sich, daB die Strahlung dazu fihrt, den Anteil des Wirmetransportes
zu erhdhen und dabei gleichzeitig den Anteil der natiirlichen Konvektion zu verringern. Geschwindigkeit
und induziertes Magnetfeld nehmen zu. die Temperaturdifferenz zwischen Wand und Fluid nimmt mit
der Grife des Strahlungs parameters ab. Im instabilen Bereich der Beheizung des Kanals von unten
iben die Strahlung und das Magnetfeld auf die Strémung einen stabilisierenden Einflufl aus.

BJIMAHUE U3NYVUYEHUSA HA KOHBEKUMIO B BEPTUKAJIBHOM KAHAIJIE
MPU HAJIOXEHUHU MATHUTHOTIO IOJIA
AHHOTAUMS — PaccMaTpHBaETCA BIMSAHHE H3IYYeHHS HA COBMECTHYHO CBOOOMHYIO H BbIHYXIEHHYIO
KOHBEKLMIO B [IOTOKE 3JIEKTPONIPOBOAHOMN XHUAKOCTH B OTKPBITOM BEPTHKAIBHOM KaHafe Npu Hano-
XEHUH OHOPOJHOTO MOMEPEYHOrO MArHUTHOT O oA, [ToNyYeHbl 3aMKHY ThI€ PELICHUS 1/ CKOPOCTH,
TEMITEPATYPSHI U HABEAEHHOTO MATHUTHOIO IIOJist B Clly4Yae ONTHYECKH TOHKOW CPEIbl IIPU JTMHEHHOM
U3MEHEHUM TeMIIEpaTypbl CTEHOK [0 BEPTHKAMH. YCTAHOBIEHO, YTO M3/IYYEHHE MHTEHCUGULIMPYET
MepeHOC TEMNA K XHIAKOCTH, YMEHbLIAS TAaKUM 06pa3oM BHsAHUE eCTECTBEHHOM KOHBEXUMH. CKOPOCTh
TEYEHMS M BEIMYHHA MATHUTHOTO TIOAS BO3PACTaloT, 4 Pa3HOCTb TEMOEPATYDP CTEHKH U JKUIKOCTH
YMEHBIIAETCA C YBEJIMYEHHEM MapaMeTrpa M3jydyeHHus. B HECTAUMOHAPHBIX YCIOBHAX, COOTBETCTBY-
FOLLUX HATpPeBY KaHalla CHU3Y, N3/y4EHHE ¥ MATHUTHOE MOJIE OKA3bIBAIOT CTAOHIN3HPYIOLLEE BIUsHYE
Ha NOTOK XKHIKOCTH.



