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Abstract-The effect of radiation on the combined free and forced convection flow of an electrically 
conducting fluid inside an open-ended vertical channel and permeated by a uniform transverse magnetic 
field is considered. Closed form solutions for the velocity, temperature and the induced magnetic field 
are obtained in the optically thin limit case when the wall temperatures are varying linearly with the 
vertical distance. It is found that radiation tends to increase the rate of heat transport to the fluid 
thereby reducing the effect of natural convection. Velocity and the induced magnetic field increase and 
the temperature difference between the wall and the fluid decreases with increase in the radiation 
parameter. In the unstable situation corresponding to heating of the channel from below, both radiation 

and magnetic field exert stabilizing influence on the flow. 

NOMENCLATURE 

B, induced magnetic field; 

B 
C:’ 

applied magnetic field; 
constant defined by equation (8); 

CP, 
specific heat at constant pressure; 

F, radiation parameter defined by equation (16); 

9. gravitational acceleration; 

L, half width of channel; 

P. pressure; 

qR, radiative heat flux; 

T, temperature; 

T*, temperature defined by equation (1); 
T WI31 wall temperature at z = 0; 
c, velocity. 

Greek symbols 

a, thermal diffusivity; 

P? volumetric expansion coefficient; 

fl*, the temperature difference T* - T,,; 

P. magnetic permeability; 

V, kinematic viscosity; 

P> reference density; 

g, electrical conductivity. 

Subscript 

w, value at the wall. 

INTRODUCTION 

SEVERAL investigations have been carried out on prob- 
lems of heat transfer in electrically conducting liquids 
permeated by electromagnetic fields. Such studies are 
of importance in the design of MHD generators, 
cross-field accelerators, shock tubes and pumps. A 

comprehensive review of these problems is given by 

Romig in [l]. Siegel [2], Perlmutter and Siegel [3], 

and Alpher [4] presented detailed analysis of forced 

convection heat transfer to an electrically conducting 
liquid flowing in a channel with a transverse magnetic 

field. Convective flow in a vertical channel was analyzed 

by Gershuni and Zhukhovitsky [5] when the wall 

temperatures are constant and by Yu [6] when the 

wall temperatures vary linearly with the vertical dis- 
tance, the flows being subjected to a transverse mag- 

netic field. 

The above studies, however, do not take into account 

heat transfer by radiation, which will be significant 
when we are concerned with space applications and 

higher operating temperatures. Greif, Habib and Lin 

[7] obtained an exact solution for the problem of 
fully-developed, radiating laminar convective flow in 

a vertical heated channel in the optically thin limit. 
The effect of radiation on MHD channel flow with 
heat transfer, however, does not seem to have received 
much attention. Viskanta [S] investigated the forced 
convection flow in a horizontal channel permeated by 
uniform vertical magnetic field taking radiation into 

account. He studied the effects of magnetic field and 
radiation on the temperature distribution and the rate 
of heat transfer in the flow but did not discuss the 
influence of radiation on the induced magnetic field. 

The object of the present paper is to discuss the 
effect of radiation on the combined free and forced 
convection of an electrically conducting fluid flowing 
inside an open-ended vertical channel in the presence 
of a uniform transverse magnetic field. We shall, 
however, confine our analysis to optically thin limits. 
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Consider the tlow of an electrically conducting fluid 
inside a Lertical channel formed by two parallel plates 

(distant II, apart) whose surface temperatures vary 

linearly along the vertical direction, taken as -_-axis. 
We take the origin at the centre of the channel and 

we assume that a uniform magnetic field B. acts 

normal to the plates. 
For the fully developed laminar flow in a uniform 

transverse magnetic field, the velocity and the induced 

magnetic field have only a vertical component. and 
all of the physical variables except temperature and 

pressure are functions of J, J’ being the horizontal 

co-ordinate normal to the plates. The temperature 

inside the fluid can be written as 

T = T*(J) + /I’: (1) 

where N is the vertical temperature gradient. The 

momentum equations in the y and z directions give 

(3) 

the equation of continuity being identically satisfied. 

The energy and the magnetic induction equations 

reduce to 

(4) 

(5) 

where in (4) we have neglected the viscous and ohmic 

dissipation and MKS units are used in the above 
equations. In the optically thin limit, the fluid does 
not absorb its own emitted radiation. This means that 
there is no self-absorption but the fluid does absorb 
radiation emitted by the boundaries. Cogley. Vincenti 
and Gilles [9] showed that in the optically thin limit 
for a non-grey gas near equilibrium, the following 
relation holds 

where K, is the absorption coefficient, ebl is the Planck 
function and the subscript u’ refers to values at the wall. 
Further simplifications can be made concerning the 
spectral properties of radiating gases (Tien [to]) but 
are not necessary for our investigation. Substitution of 
equation (6) in (4) yields 

,1211* 
Nr = r “‘- _ (-(J* 

d.’ 
(7) 

where 

K,,,(de,,,. dT), di. (8) 

Here the subscript 0 indicates that all quantities have 

been evaluated at the reference temperature T,, defined 

in the nomenclature. Hence our study will be limited 

to small variations in wall temperature. 

Integrating (2) with respect to J‘. we have 

B’ 
,’ = - 

2/l 
+,1(--l. 19 

Substitution of (9) in (3) gives 

Since the right hand side of (IO) is a function of : 

only and the left hand side is a function of y only. each 

side must be equal to a constant C1. Thus 

Theconstant CL depends on the physics of the problem. 

It may be determined from either the end conditions 
of pressure. to which the channel is subjected, or from 

the mass flow through the channel. 

We now introduce the following dimensionless 
quantities 

q = 1 
Ll% 

L’ 
I, = . t_-!!Y 

x NL’ 
h = B”~? 

0 

M = Hartmann number = B,L(a/pv)“‘. 

Ra = Rayleigh number = y/?NL4/vr, (12) 

Pm = magnetic Prandtl number = ccgp. 

Using (I 2). equations ( 1 I), (5) and (7) become 

d’rc M2 dh 
-2+ 

dq 
mm-Ru.t=C2 

Pm dq 
(13) 

(14) 

(15) 

respectively, where 

L2C 
FE--~ . 

C,L.3 C2 = ~~~ ~~ (16) 
3: Xl’ 

The boundary conditions for velocity and temperature 
are 

u = t = 0 at ‘I= _tl. (17) 

Since the channel walls are assumed electrically non- 
conducting, the magnetic boundary conditions are 

h=O at ‘I = +I. (18) 
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Integration of (14) gives increase in the induced field b(q) with increase in F. 

1 db 
Such a trend is reflected in Fig. 5 which shows b/Pm 

--+u = constant = C3. 
Pm dq 

(19) against q for various values of F subject to the above 

mentioned values of Ra, M2 and C,. Figure 4 shows 
that b/Pm decreases with increase in M2 (with F = 1, 

Elimination of u and b from (13), (15) and (19) then yields Ra = 1, C, = 1). It may be noted that large values of 

$-(F+W)$+(M~F+R~)~= c, 
Pm will correspond to large values of the induced 

magnetic field. Further, since the temperature inside 
the fluid increases with increase in M for fixed F, Ra 

where C, = M2C3 - Ca. From the above equation, the and C,, it follows that t decreases with increase in M 
solution of t(q) satisfying the boundary conditions (17) as shown in Fig. 2. As for the flow rate given by (24), 

is easily obtained. Having found t, one can determine we may note that since u increases with F (for fixed M, 

u and b from (15) and (19) using the boundary con- Ra and C,) M: also increases with F. Further since the 

ditions (17) and (18). These solutions are 

G cash Klq K1 cash K,r/ 

‘-(K:‘cosh’+(KI’K:). 1 G9) 
(21) 

b(v) = 

where 

K1 = [(F+M2)/2 + {(F-M2)2 -4Ra}‘/2/2]1’2 

K2 = [(F+M2)/2 - {(F-M2)2 -4Ra}“2/2]1’2. 
(23) 

The non-dimensional flow rate w and the heat-transfer coefficient h (at the wall d = 1) due to thermal conduction 

are given by 

s 

1 

w= udrl 
-1 

2c4 
= (M2F+Ra)(K;-K;)’ 

K;(F - K:) 
K1 .tanhK +K’(F-K’)tanhK 1 

K2 
2 

I 

(24) 

h=_ d” 0 C,K:K; tanh K2 

dq s=l =(M2F+Ra)(K;-Kf)’ 
-___ 1 K2 

(25) 

RESULTS AND DISCUSSIONS 

Radiation tends to increase the rate of heat transport 
to the gas, thereby increasing the temperature of the 
gas. Thus the effect of radiation is to reduce the 
influence of natural convection by causing a reduction 
in the temperature difference between the fluid and 

the channel walls. This is shown in Fig. 3 where t 
decreases with increase in F with Ra = 1, M2 = 10, 
C4 = 1. Again due to this effect, the reduction in velocity 
occurring in a heated upflow is less for a radiating 
fluid than that for a non-radiating fluid. This explains 
why the velocity u(q) at a point increases with increase 
in F for fixed values of Ra, M2 and C, as shown in 
Fig. 1, where we have taken Ra = 1, M2 = 10 and 

C4 = 1. This increase in velocity in its turn tends to 
pull the magnetic lines of force thereby causing an 
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velocity profile becomes progressively flatter with in- 
crease in the magnetic parameter M (for fixed F, Ra 
and C,), w decreases with increase in M. These results 
are shown in Table 1 for Ra = 1 and C4 = 1. The 

corresponding results for h, the rate of heat transfer 
at the wall given by (25) are shown in Table 2 for 
Ra=landC,=l. 

We conclude our discussion with an interesting 
observation on the effect of radiation on the flow in 
the unstable situation N < 0. In this case there is 
heating from below so that Ra < 0 as can be seen 
from (12). Although the solutions for t(q), u(r), and 
b(v) given by (20)-(22) are finite for all values of 
F, Ra and M2 with Ra > 0, these functions may 
become infinite for Ra < 0 such that K2 becomes a 
pure imaginary number given by K; = iK2, K; being 
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Table I. Variation of flow rate with radiation and magnetic field 

I: 
M2 1 2 3 4 5 6 

10 0.134033 @ 134679 0.135093 @135380 0.135592 @135754 
20 0076126 0.076929 0.077058 0.077148 0.077214 0.077264 
30 0.054053 0.054151 @054213 0.054256 0054238 0.0543 12 

Table 2. Variation of heat-transfer rate at the wall with F and M 

F 
M2 1 2 3 4 5 6 

______. 

10 0.048561 0.038499 0.03203 1 DO27513 0.024172 0.021597 
20 0.02799 1 0.02228 1 0.018617 0.016058 0.014165 0012705 
30 0019809 0.015819 0.013259 0~011471 0.010147 0.009124 

FIG. 1. Effect of radiation on velocity for MZ = 10. 

FIG. 2. Temperature distribution for different values of 
Hartmann number for F = I. 

iXlO0 

FIG. 3. Effect of different radiation parameters on 
temperature for M2 = 10. 

FIG. 4. Effect of Hartmann number on induced field for 
F = I. 
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Finally we remark that although our analysis is 
confined to optically thin limit flows, such a study will 

FIG. 5. Effect of radiation on induced field for M2 = 10. 

real. Examination of the solutions (20)-(22) reveals 
that there are critical values of K; (viz. K; = nrr/2, 
n being an odd integer), such that cash Kz = cos K; 

vanishes and t(q), u(q) and b(q) become infinite. This 
is a result of the emergence of instability. Equating 
iK2 to n/2 (corresponding to the lowest eigenvalue 
n = 1) with Kz given by (23) the critical Rayleigh 
number at the onset of instability is given by 

-~a, = ;E+F+M’]+FM’ (26) 

with Ra, < 0. This shows that the critical Rayleigh 
number not only increases with increase in the 
Hartmann number A4 but also increases with increase 
in the radiation parameter F. Thus radiation exerts 
a stabilizing influence on the flow which is consistent 
with the fact that radiation tends to reduce the effect 
of natural convection. 

be useful in- increased understanding of the flow 
phenomenon which can then be used to study more 
complex phenomena involving radiation. 
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EFFET DU RAYONNEMENT SUR CA CONVECTION HYDROMAGNETIQUE 
DANS UNE CONDUITE VERTICALE 

R&urn&On considtre I’effet du rayonnement sur la convection mixte d’un fluide electriquement con- 
ducteur dans un canal vertical ouvert aux extremites et soumis a un champ magnetique uniforme et 
transversal. On obtient les solutions analytiques pour la vitesse, la temperature et pour le champ 
magnetique induit, ceci dam le cas d’une tpaisseur optique mince et d’une temperature de paroi variant 
lineairement avec la distance verticale. On trouve que le rayonnement tend a accroitre le flux de transport 
thermique et de reduire en consequence l’effet de la convection naturelle. La vitesse et le champ magnetique 
induit augmentent et la difference de temperature entre la paroi et le fluide diminue lorsque le 
parametre de rayonnement croit. Dans la situation instable qui correspond au chauffage du canal a 
partir du bas, le rayonnement et le champ magndtique exercent tous deux une influence stabilisante 

sur 1’8coulement. 
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STRAHLUNGSEINFLUSS BEI HYDROMAGNETISCHER KONVfKTlON 
IN EINEM VERTIKALEN KANAL 

Zusammenfassung-- Es wird der StrahlungseinHuD auf den gekoppelten freien und erzwungenen 
Konvektionsstrom eines elektrisch leitenden Fluides m einem vertikalcn Kanal mit offenem Ende 
betrachtet. wobei das Fluid einem gleichfiirmigen transversalen Magnetfeld ausgesetzt ist. Eine 
geschlossene Form van Ltisungen erhiilt man fiir die Geschwindigkeit, die Temperatur und das induzierte 
Magnetfeld im optisch diinnen Grenzbereich. fiir den sich die Wandtemperatur linear mit der vertikalen 
Entfernung verlndert. Es zeigt sich. daB die Strahlung dazu fiihrt. den Anteil des Wiirmetransportes 
zu erhiihen und dabei gleichzeitig den Anteil der natiirlichen Konvektion zu verringern. Geschwindigkeit 
und induziertes Magnetfeld nehmen 711. die Temperaturdifferenz zwischen Wand und Fluid nimmt mit 
der Griifle des Strahlungs parameters ab. Im instabilen Bereich der Beheizung des Kanals von unten 

iiben die Strahlung und das Magnetfeld auf die Stromung einen stahilisierenden Einflun aus. 

BJIMIIHME M3JlYYEHMII HA KOHBEKIJMKI B BEPTMKAJIbHOM KAHAJIE 
nPM HAIIOXEHMM MArHMTHOI-0 nOJIR 

hHOTBUHR - PaCCMEiTpkiBaCTCR B,IAIIHIie M3JlyYeHWl Ha COBM’ZCTHYH) C13060~~yIO II BblHYW(&eHHY,O 

KOHBeKUUIO B IIOTOKe 3JIeKTpOIIpOBOnHOfi wtL%AKOCTw B OTKPblTOM B’ZpTHKanbHOM KaHaJW_ IIpH H&NO- 

XR?HUU OnHOpOflHOl-0 FlOIlepWHOrO MarHMTHOrO IIOJIR. nOJly%HbI 3aMKHYTbIC peUIleHLGi nJIlI CKOpOCTki, 

TeMnepaTypbI A HaBe&HHOrO MarHHTHOrO IIOJISI B CJly’iae OIITWECKA TOHKOti CpeAbI IIpH JWH&iHOM 

83MeHeHllH TeMIlepaTypbI CTCHOK IlO BepTkiKaNf. YCTaHOBJEHO, ‘IT0 Ii3Jt)‘YeHAe HHTeHCki@iUkfp)‘eT 

WpeHOC TeIIJIa K XWIKOCTH, )‘Mt?HbIUaR TaKRM o6pa3oM BJIMIlHkie eCTCCTBeHHOZi KOHBCKUHH. CKOPOCTb 

TeYeHHII U BeJIWIHHa MarHMTHOrO EIOflR B03PaCTaH3T, a Pa3HOCTb TeMtIepaTyp CTeHKA M XWAKOCTH 

,JMeHbLUaeTCR C yBt2IMYCHWM IlapaMeTfJa H3JlYYeHMII. B HCCTaUWOHaPHblX YCJlOBWiX, COOTBeTCTBY- 

IOIUUX HarpeBy KaHaJIa CHM3Y, M3JIyYeHHC IT MWHIlTHOe none OKa3bIBiSOT cTa6finwrlpytotuee BJIHRHMe 

Ha nOTOK )(CHLlKOCTM. 


